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Green’s tensor technique for scattering in two-dimensional stratified media

Michael Paulus1,2 and Olivier J. F. Martin1,*
1Electromagnetic Fields and Microwave Electronics Laboratory, Swiss Federal Institute of Technology, ETH-Zentrum ETZ,

CH-8092 Zurich, Switzerland
2IBM Research, Zurich Research Laboratory, CH-8803 Ru¨schlikon, Switzerland

~Received 1 February 2001; published 29 May 2001!

We present an accurate and self-consistent technique for computing the electromagnetic field in scattering
structures formed by bodies embedded in a stratified background and extending infinitely in one direction
~two-dimensional geometry!. With this fully vectorial approach based on the Green’s tensor associated with the
background, only the embedded scatterers must be discretized, the entire stratified background being accounted
for by the Green’s tensor. We first derive the formulas for the computation of this dyadic and discuss in detail
its physical substance. The utilization of this technique for the solution of scattering problems in complex
structures is then illustrated with examples from photonic integrated circuits~waveguide grating couplers with
varying periodicity!.
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I. INTRODUCTION

The accurate computation of light scattering from p
ticles in the presence of a stratified background is extrem
important for the understanding of realistic structur
Ridges on a multilayered waveguide@1#, opaque regions on a
contact lithography mask@2#, polarization gratings on a
transparent backplane@3#, and nanowires deposited on a su
strate for surface-enhanced Raman scattering@4# all have in
common that dielectric or metallic scatterers are distribu
in a medium consisting of several layers with different p
mittivities.

Recently, we presented a technique for computing
propagation and scattering of light in three-dimensional~3D!
structures formed by a stratified background with embed
scatterers of finite extension in all three dimensions@5,6#.
This approach is based on the Green’s tensor associated
the stratified background. In this paper, we extend this te
nique to two-dimensional~2D! geometries, i.e., systems wit
a translation symmetry in one direction.

A typical 2D system that we want to study is shown
Fig. 1. Several scatterers described by the permittivity«(r )
are embedded in a stratified background and illuminated w
an incident fieldE0. The stratified background is compose
of L layers with relative permittivity« l , l 51, . . . ,L, and the
scatterers extend infinitely along they axis so that the mate
rial system is invariant in that direction. If also the excitati
has such a translation symmetry, we can restrict the stud
the 3D system~Fig. 1! to a 2D cross section in thexz plane
~Fig. 2!. We then define the coordinater i parallel to this
plane,

r5~r i ,r y!5~r x ,r z ,r y!, ~1!

and the parallel wave vectorki ,

k5~ki ,ky!5~kx ,kz ,ky!. ~2!

*Correspondence author. Email address: martin@ifh.ee.ethz.
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Let us emphasize that it is not necessary that also the i
dent fieldE0 propagates in thexz plane ~Fig. 1!. The sole
constraint is thatE0 has an exp(iky

0y) dependence on the sym
metry directiony. For example, a plane wave

E0~r ,t !5E0exp~ ik0r2 ivt !5E0exp~ iki
0r i2 ivt !exp~ iky

0y!
~3!

at oblique incidence on the structure fulfills this conditio
~Figs. 1 and 2!.

However, if E0 propagates in thexz plane (ky
050), it is

possible to decompose the total field into a transverse ele
~TE! part with the electric field in thexz plane, and a trans
verse magnetic~TM! part with the electric field parallel to

FIG. 1. Schematic view of a 2D scattering system. Several s
terers with permittivity«(r ) are embedded in a stratified bac
ground formed byL layers with permittivity« l , l 51, . . . ,L. The
scatterers are infinitely extended in they direction. However, the
propagation of the incident field is not restricted and its wave vec
k05ki

01ky
0 can have components parallel and perpendicular to

xz plane. Similarly, the electric field can be split into two contrib
tions: thep-polarized partEp

0 lying within the plane of incidence
formed byk0 and thez axis, and thes-polarized partEs

0 standing
perpendicularly to this plane. Ifk05ki

0 (ky
050), p polarization is

referred to as TE ands polarization as TM.
©2001 The American Physical Society15-1
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the y direction. These two polarizations are then decoup
and the scattered field conserves the polarization of the i
dent field, i.e., thex andz field components are independe
of the y component. This is not the case for oblique in
dence (ky

0Þ0): all three field components are coupled t
gether and new components that were not present in the
cident field can be created during the scattering process@7#.

For the investigation of such 2D geometries, many use
techniques have already been developed@8–21#. However,
most of them strongly depend on the particular geome
under study. The aim of this paper is to present a very g
eral technique for scattering calculations in 2D syste
where the scatterers are embedded in a background for
by an arbitrary number of layers. The description of our a
proach in Sec. II consists of two parts. First, we study
general solution of the scattering problem using the Gree
tensor associated with the background of the system.
then derive this Green’s tensor and discuss its numer
computation. In Sec. III, we illustrate the technique with tw
examples and summarize in Sec. IV. All the detailed form
las required for the practical implementation of this meth
are given in the Appendix.

II. FORMALISM

A. Solution of the 2D scattering problem

To obtain the solution of the 2D scattering problem d
picted in Figs. 1 and 2, let us start with the more gene
solution of the corresponding 3D problem as developed
Refs.@5,6#. We consider nonmagnetic materials with relati
permeability m51 and harmonic fields with time depen
dence exp(2ivt).

When a system formed by a stratified background w
embedded scatterers is illuminated with an incident elec
field E0(r ), the total fieldE(r ) is given by the volume inte-
gral equation:

FIG. 2. Projection of Fig. 1 on thexz plane. This plane is nor-
mal to the direction of translation symmetry and the investigation
the system can be restricted to this plane. Note that only the
jectionki

0 of the incident wave vectork0 is shown and in general al
three components of the incident electric field are nonzero.
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E~r !5E0~r !1E
V
dr 8G3D~r ,r 8!•k0

2D«~r 8!E~r 8!, ~4!

where G3D(r ,r 8) is the Green’s tensor associated with t
stratified background,k0

25v2«0m0 is the vacuum wave
number, andD«(r ) is the dielectric contrast:

D«~r !5«~r !2«k , rP layer k. ~5!

The integration in Eq.~4! runs over the scatterer volumeV.
The Green’s tensorG3D(r ,r 8) is the solution of the vector
wave equation with a point source term@22#,

“3“3G3D~r,r 8!2k0
2«kG3D~r,r 8!51d~r2r 8!,

rP layer k, ~6!

and represents the electric field in the stratified backgro
radiated atr by three orthogonal unit dipoles located atr 8.

In a 2D system, where the scatterer volume extends i
nitely in they direction, the dielectric contrast does not d
pend on this coordinate. Since we assume, as discusse
the Introduction, that all the fields have a plane-wave dep
dence in they direction, the electric field can be written as

E~r !5E~r i!exp~ iky
0y!. ~7!

Let us note that the wave-vector componentky
0 , which is

tangential to the different material interfaces, is const
throughout the entire stratified background. It is therefo
solely determined by the illumination field and remains co
served in the scattered field. Hence, Eq.~4! can be rewritten
as

E~r i!5E0~r i!1E
A
dr i8G2D~r i ,r i8!•k0

2D«~r i8!E~r i8!, ~8!

where we introduced

G2D~r i ,r i8!5E
2`

`

dy8G3D~r,r 8!exp@ iky
0~y82y!#. ~9!

Note that the integration in Eq.~8! runs only over the scat
terers sectionA. Recalling thatG3D(r ,r 8) corresponds to a
point source,G2D(r i ,r i8) gives the field generated by an in
finite line source extending in they direction and represent
the 2D Green’s tensor associated with the stratified ba
ground.

As for 3D systems@6#, the Green’s tensor can be split int
two parts:

G2D~r i ,r i8!5dkk8G2D
D ~r i ,r i8!1G2D

I ~r i ,r i8!,

r iP layer k,r i8P layer k8. ~10!

G2D
D corresponds to the direct field fromr i8 to r i and is given

in closed form by the 2D Green’s tensor for an infinite h
mogeneous material of permittivity«k @7#. The indirect part
G2D

I accounts for all the reflections and refractions at
interfaces and must be evaluated numerically. Since the

f
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GREEN’S TENSOR TECHNIQUE FOR SCATTERING IN . . . PHYSICAL REVIEW E63 066615
vergence of the Green’s tensor forr i→r i8 is completely in-
cluded inG2D

D , it can be treated in a similar way to that fo
an infinite homogeneous medium. Taking the principal va
as in Eq.~7! in Ref. @7#, we rewrite Eq.~8! as

E~r i!5E0~r i!1E
A
dr i8G2D

I ~r i ,r i8!•k0
2D«~r i8!E~r i8!

1 lim
dA→0

E
A2dA

dr i8dkk8G2D
D ~r i ,r i8!•k0

2D«~r i8!E~r i8!

2L•
D«~r i!

«k
E~r i!, ~11!

where the infinitesimal areadA centered atr i is used to
exclude the singularity. The source dyadicL depends on the
shape ofdA and is given in detail by Yaghjian@23#.

B. Discretized 2D equation

The integral equation~11! is solved numerically on a two
dimensional grid withN meshes centered atr i ,i P layer k i
with area Ai , i 51, . . . ,N, and dielectric contrastD« i
5D«(r i ,i). The discretization need not be regular but c
vary locally to enhance the required accuracy, with a sma
mesh where the dielectric contrastD«(r i) is large. Introduc-
ing the discretized fieldEi5E(r i ,i) and the discretized
Green’s tensorsGi , j

D 5G2D
D (r i ,i ,r i , j ) andGi , j

I 5G2D
I (r i ,i ,r i , j ),

the discretized version of Eq.~11! reads

Ei5Ei
01(

j 51

N

Gi , j
I
•k0

2D« jEjAj

1 (
j 51,j Þ1

dk ik j
Gi , j

D
•k0

2D« jEjAj

1M i•k0
2D« iEi2L•

D« i

«k i

Ei , ~12!

i 51, . . . ,N,

with the self-termM i defined as

M i5 lim
dA→0

E
Ai2dA

dr i8G2D
D ~r i ,i ,r i8!. ~13!

Since the tensorsL and M i come from the direct contribu
tion, we can use their analytic form for a homogeneous
larizable background with permittivity«k , as given in Ref.
@7#. The system of equations~12! is best solved using an
iterative solver such as conjugate gradients@24#.

C. 2D Green’s tensor for a stratified medium

Equation ~9! shows that the Green’s tensor for the 2
system can be directly obtained fromG3D(r ,r 8) by integra-
tion along the translation axisy. WhereasG3D(r ,r 8) for an
infinite homogeneous background can be expressed ana
cally @7#, this is not possible when the background is stra
fied. However, a formulation can be found that provides
numerical solution forG3D(r ,r 8) in that case, as explained i
detail in Ref.@5#. Let us briefly summarize this procedur
06661
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The Green’s tensor is expressed in reciprocal spacek
space!, where the boundary conditions at the stratificati
interfaces can be enforced more easily. Since we need
Green’s tensor in direct space, an inverse Fourier transf
is performed and, after analytical integration overkz (z is the
stratification direction!, we find the following expression fo
the Green’s tensor associated with a stratified backgro
@Eq. ~10! in Ref. @5##:

G3D~r ,r 8!52
ẑẑ

kk
2

d„R…1
i

8p2E E dkxdky

3exp$ i @kx~x2x8!1ky~y2y8!#%

3@hs~kx ,ky ;z,z8!1hp~kx ,ky ;z,z8!#,

~14!

where R5(x2x8,y2y8,z2z8) and kk
25v2«kmk with r

P layer k. The tensorshs and hp take into account all the
reflections and refractions at the different interfaces. Th
are determined by the boundary conditions for the elec
and the magnetic fields and can be split into two parts c
responding to thes- andp-polarized waves, as indicated b
the superscript.

Inserting Eq.~14! in Eq. ~9!, the integral overy8 can be
identified with ad function:

G2D~r,r 8!52
ẑẑ

kk
2

d„R…1
i

4pE E dkxdky

3exp@ ikx~x2x8!#exp@ i ~ky2ky
0!y#d~ky2ky

0!

3@hs~kx ,ky ;z,z8!1hp~kx ,ky ;z,z8!#

52
ẑẑ

kk
2

d„R…1
i

4pE2`

`

dkxexp@ ikx~x2x8!#

3@hs~kx ,ky
0 ;z,z8!1hp~kx ,ky

0 ;z,z8!#. ~15!

Thus, to obtain the 2D Green’s tensor, only a on
dimensional integral over the transverse componentkx must
be calculated numerically. The components of the tensorhs

andhp can be derived from careful evaluation of Eq.~10! in
Ref. @5# and are explicitly given in the Appendix.

The numerical evaluation of the remaining integrals@Eq.
~15!# is intricate because it involves several poles and bra
cuts corresponding to the different electromagnetic mo
that can be excited in the stratified medium. However,
mathematical structure of the equations for the 2D case
sented here is similar to that of the 3D case detailed in R
@5#. A difference at first view is that in 2D the integrals ru
along the entirekx axis while for 3D the integration path i
restricted to the semi-infinite positivekr axis. However, in
2D the component functions ofhs andhp are either even or
odd symmetrical with respect to the integration variablekx .
It is therefore possible to reduce the quadrature to the se
infinite positivekx axis. Hence, exactly the same integrati
technique as proposed in 3D can be applied@5#: We first use
an elliptical deformation of the integration path in the four
5-3
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MICHAEL PAULUS AND OLIVIER J. F. MARTIN PHYSICAL REVIEW E 63 066615
quadrant of the complexkx plane to avoid the singularities
As in the 3D case, we then have two possibilities to resu
the integration: Either we follow the realkx axis or ~for x
Þx8) we deflect the integration path parallel to the ima
nary axis with the correct direction chosen in accordance
the sign of x2x8. In both cases the integrands conver
exponentially because of their dependence on exp(ikkzuz
2z8u)5exp$i@kk

22kx
22(ky

0)2#1/2uz2z8u%→exp(2kxuz2z8u) when
kx→` for the real axis integration@see Eqs.~A1!–~A18!#,
and on exp(ikxux2x8u) @see Eq.~15!# for the deflected integra
tion path. Hence, a comparison betweenuz2z8u and ux
2x8u gives the path that provides fastest convergence. Le
finally note the basic difference between the 2D and 3D
tegrals: In 3D, the angular integration of exponential fun
tions in k space leads to Bessel/Hankel functions in the
tegrand, whereas in 2D, the bare exponential functi
remain.

III. ILLUSTRATIVE EXAMPLES

A. The Green’s tensor as a dipole field

To clarify the physical substance of the Green’s tensor
stratified media, let us start by illustrating some of its ba
properties. We consider a simple three-layer system«151,
«259, «351 with varying thicknessh of the high permit-
tivity slab, and we study two components of the Gree
tensor,Gyz andGzy , as a function of thez coordinate of the
observation point, r i5(l,z). The source point r i8
5(0,1mm) is held fixed in the top layer. The vacuum illu
mination wavelength isl5633 nm.

Let us first mention that both components vanish if t
incident field does not have a componentky

0 in the y direc-
tion. ~In that case, TE and TM waves are decoupled a
Gyx5Gxy5Gyz5Gzy50.! In our example, we use an illu
mination with a@111̄# orientation, so thatky

05k1 /A3. Figure
3 showsGyz and Gzy when the high permittivity layer ex
tends fromz50 to z5430 nm. Since the Green’s tens
represents the electric field radiated atr by three orthogona
unit dipoles atr 8, its components must fulfill the respectiv
boundary conditions at the interfaces. Correspondingly,Gyz
~they component of az-oriented dipole! is continuous across
the interfaces, whereasGzy ~thez component of ay-oriented
dipole! jumps by a factor«2 /«159 and«3 /«25 1

9 , respec-
tively.

It is quite surprising that in the lower layer (z,0) both
components are identical~Fig. 3!. Using the integrands given
in the Appendix and the iterative derivation of the amplitu
coefficients of Appendix A in Ref.@5#, it can be shown tha
for r 8 and r in the two outermost layers 1 andL, the com-
ponents of the Green’s tensor are coupled:

Gaz

k1z
5

Gza

kLz
, a5x,y, ~16!

whereklz5@kl
22kx

22(ky
0)2#1/2, l 51,L. Since in our example

r 8 is located in the top layer andk1z5k3z , the components
coincide forz,0 ~Fig. 3!.
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Let us now discuss the relation between the Green’s
sor for a stratified medium and that associated with a hom
geneous background«H . When r i2r i8 becomes large, the
plane-wave expansion of the Green’s tensor is mainly g
erned by the plane wave which propagates in radial dir
tion, ki /ukiu5(r i2r i8)/ur i2r i8u. Hence, withx fixed andz
→6`, the integrals in Eq.~15! are dominated by thekx
50 terms. In this limit, the ratio between the free-spa
component and the component with stratification is given
the reflection and transmission coefficients of the stratifi
structure corresponding to this single plane wave. Fo
three-layer structure, the transmission coefficientT for Gyz
andGzy reads@25#

T5
T12T23exp~ ihk2z!

11R12R23exp~2ihk2z!
, ~17!

whereRl ,l 11 andTl ,l 11 are the Fresnel reflection and tran
mission coefficients:

Rl ,l 115
« l 11klz2« lkl 11z

« l 11klz1« lkl 11z
, ~18a!

Tl ,l 115
2« l 11klz

« l 11klz1« lkl 11z
. ~18b!

Note that Eqs.~18a! and ~18b! give the coefficients for a
p–polarized plane wave corresponding to the polarization
Gyz andGzy @see Eqs.~A12! and ~A16!#.

An analysis of Eq.~17! yields a condition for maximal
transmission through the slab with thicknessh:

hmaxk2z5np, ~19a!

and for minimal transmission

FIG. 3. Green’s tensor components for a stratified backgro
(uGyzu and uGzyu) and a homogeneous background (uGH,yzu
5uGH,zyu). The stratified structure consists of three layers with«1

51, «259, «351. The high permittivity slab extends fromz50 to
z5430 nm resulting in maximal transmission (Tmax51). The per-
mittivity of the homogeneous medium is«H51. The line source at
z851 mm is located in the top layer and held fixed. The wav
length isl5633 nm.
5-4
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hmink2z5~n1 1
2 !p, ~19b!

where n51,2,3, . . . . Since for the ky50 terms k2z

5Ak2
22(ky

0)2, maximal and minimal transmission throug
the slab of our example are obtained whenhmax'n
3107.5 nm andhmin'(n11/2)3107.5 nm, respectively
The corresponding coefficient of maximal and minim
transmission isuTmaxu51 and uTminu'0.69, respectively@Eq.
~17!#. Hence, the plane wave is completely transmit
through a slab with thicknesshmax without any reflection.

In Fig. 3 „ h5430 nm543107.5 nm, maximal trans
mission @see Eq. ~19a!#…, we also report the componen
GH,yz5GH,zy of the Green’s tensor associated with a hom
geneous background«H51. In the far-field limit z→6`,
we observe that indeed the components for the strati
structure converge to the free-space solution. Atz
562 mm, the difference is less than 5% and atz
5610 mm it is '1% ~not shown!. For comparison, we
also study a second structure withh5484 nm'(411/2)
3107.5 nm. Figure 4 showsGyz , Gzy , andGH,yz for this
geometry with minimal transmission. Atz522 mm, the
ratio uGyz /GH,yzu'0.75 and atz5210 mm uGyz /GH,yzu
'0.70 ~not shown! it is close to 0.69, as expected from th
above calculation.

B. Scattering on a planar waveguide grating coupler

We now use our formalism for a scattering calculation
an integrated optics structure. We consider a silicon-
insulator ~SOI! planar waveguide with a finite rectangul
grating on top, as shown in Fig. 5@26,27#. If a mode propa-
gates in the waveguide and scatters on the grating, ligh
coupled out of the guiding layer and is transmitted into
air and/or towards the substrate. In Fig. 6, we report
electric-field amplitudeuEu when a grating consisting of 2
protrusions is illuminated with the TE0 mode ~transverse
electric mode with electric field polarized in they direction!
propagating in thex direction at a wavelengthl51.3 mm.
The maximum amplitude of the incident mode is normaliz

FIG. 4. Same situation as in Fig. 3, but with a high permittiv
layer with thicknessh5484 nm. This corresponds to minima
transmission through the slab (Tmin'0.69).
06661
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to unity. Three periodicities—d5300 nm,d5400 nm, and
d5500 nm—are considered at a fixed filling factor 0.5.
the left side of all three geometries, a standing wave occ
because of the reflection of the incoming mode by the g
ing. At the right side, beyond the grating, we can observe
interference pattern created by the interaction of the fie
scattered in the forward direction by the different protrusio
~and the waveguide mode!. The electric-field distributions
strongly differ in the three cases. Ford5300 nm, most of
the outcoupled light is scattered towards the substrate
almost no light is scattered upwards@Fig. 6~a!#. With in-
creasing periodicity, the main beam of the outcoupled lig
rotates, so that ford5400 nm andd5500 nm a larger frac-
tion of the scattered field is transmitted into the air@Figs.
6~b! and 6~c!#.

For a more quantitative comparison, we report in Fig
the angular distribution of the electric-field amplitudeuEu far

FIG. 5. Geometry of the SOI planar waveguide~permittivities
«Si512.3, «SiO2

52.1; wavelengthl51.3 mm). A Si grating with
150-nm height, periodicityd, and a 0.5 filling factor is etched on
top of the waveguide.

FIG. 6. Electric-field amplitude in the structure of Fig. 5 wit
three grating periodicities:~a! d5300 nm,~b! d5400 nm, and~c!
d5500 nm. The bars represent the total length of each grating.
systems are illuminated with a TE0 mode propagating in thex di-
rection. For clarity, the guiding silicon layer is marked with tw
lines. A logarithmic color scale is used.
5-5
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MICHAEL PAULUS AND OLIVIER J. F. MARTIN PHYSICAL REVIEW E 63 066615
away from the grating (50mm). Note first that the centra
peak atf5180° represents the mode in the guiding lay
Of course, the same peak occurs atf50° andf5360° ~not
shown!. Whereas ford5300 nm, we can observe a sing
output beam with an anglef5205° ~backward direction in
the substrate!, two beams appear ford5400 nm andd
5500 nm, respectively: a major one into the air withf
5100° ~approximately normal to the waveguide surface! and
f561° ~backward direction in the air!, respectively, and a
minor one towards the substrate withf5264° and f
5293°, respectively.

In the substrate region one observes for all three per
icities two additional, much broader and smaller peaks af
'225° andf'325°. A comparison with the field distribu
tions of Fig. 6 shows that these peaks correspond to e
effects at the beginning and at the end of the grating.
these interfaces between the planar geometry and the gra
the mode scatters strongly.

Figure 6 also illustrates that the boundary conditions b
at the edges of the computation window and at the differ
material interfaces are perfectly fulfilled. These bound
conditions are already included in the Green’s tensor so
there is no special treatment necessary to avoid unphy
reflections. Let us finally emphasize that the discretization
the geometry is restricted to the protrusions forming the g
ing. The optical processes in the stratified planar wavegu
are completely accounted for in the Green’s tensor associ
with the background.

IV. SUMMARY

In this paper, we have presented a Green’s tensor
proach for the computation of scattering problems with
bodies embedded in a stratified background. We have
described in detail the numerical procedure required for
computation of the Green’s tensor associated with a strat
background. We have then demonstrated the utilization
this dyadic to perform scattering calculations in complex
systems. From a practical point of view, in addition to tru

FIG. 7. Angular distribution of the electric-field amplitud
50 mm away from the center of the three gratings in Fig. 6. T
central peak atf5180° is caused by the mode in the guiding
layer and appears also atf50° andf5360° ~not shown!.
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two-dimensional geometries, 3D structures can often be c
sidered as 2D when the extension of the scatterers in
particular direction is very large and the electromagne
field is so well localized that edge effects in that directi
become negligible. It is then justified to assume that the s
tem extends to infinity in that particular direction.
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APPENDIX

In this appendix, we explicitly give the integrands of E
~15!. To impose the boundary conditions at the different
terfaces, the components of the tensorshs and hp are ex-
pressed in terms of upgoing and downgoings-and
p-polarized plane waves:

hxx
s ~kx!5

ky
02

kkzkr
2 @Ak

sexp~ ikkzz!1Bk
sexp~2 ikkzz!#,

~A1!

hxx
p ~kx!56

kx
2kkz

kk
2kr

2 @Ak,xx
p exp~ ikkzz!2Bk,xx

p exp~2 ikkzz!#,

~A2!

hxy
s ~kx!52

ky
0kx

kkzkr
2 @Ak

sexp~ ikkzz!1Bk
sexp~2 ikkzz!#,

~A3!

hxy
p ~kx!56

ky
0kxkkz

kk
2kr

2 @Ak,xy
p exp~ ikkzz!2Bk,xy

p exp~2 ikkzz!#,

~A4!

hxz
s ~kx!50, ~A5!

hxz
p ~kx!52

kx

kk
2 @Ak,xz

p exp~ ikkzz!2Bk,xz
p exp~2 ikkzz!#,

~A6!

hyx
s ~kx!5hxy

s , ~A7!

hyx
p ~kx!5hxy

p , ~A8!

hyy
s ~kx!5

kx
2

kkzkr
2 @Ak

sexp~ ikkzz!1Bk
sexp~2 ikkzz!#,

~A9!

hyy
p ~kx!56

ky
02

kkz

kk
2kr

2 @Ak,yy
p exp~ ikkzz!2Bk,yy

p exp~2 ikkzz!#,

~A10!
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hyz
s ~kx!50, ~A11!

hyz
p ~kx!52

ky
0

kk
2 @Ak,yz

p exp~ ikkzz!2Bk,yz
p exp~2 ikkzz!#,

~A12!

hzx
s ~kx!50, ~A13!

hzx
p ~kx!57

kx

kk
2 @Ak,zx

p exp~ ikkzz!1Bk,zx
p exp~2 ikkzz!#,

~A14!

hzy
s ~kx!50, ~A15!

hzy
p ~kx!57

ky
0

kk
2 @Ak,zy

p exp~ ikkzz!1Bk,zy
p exp~2 ikkzz!#,

~A16!

hzz
s ~kx!50, ~A17!

hzz
p ~kx!5

kr
2

kk
2kkz

@Ak,zz
p exp~ ikkzz!1Bk,zz

p exp~2 ikkzz!#,

~A18!

where kr
25kx

21(ky
0)2 and kkz5(kk

22kr
2)1/2 with r

P layer k. The upper sign in these equations refers toz
.z8 and the lower sign toz,z8. The amplitude coefficients
Ak

s , Bk
s , Ak,ab

p , andBk,ab
p must be calculated for the layerk

wherer is located and are functions of (kkz ;z,z8). They are
connected to the amplitudes in all other layers and can
found via an iterative scheme completely identical to that
the 3D case given in Appendix A of Ref.@5#. Note thatkkz is
now only a function ofkx , sinceky is replaced by the con
stant parameterky

0 given by the incident field. Since all non
l.

.

h-

w,

06661
e
f

vanishing amplitude coefficients ofs-polarized waves are
equal, we can suppress the indicesa andb and simply write
Ak

s andBk
s .

Let us now consider the special case in which the incid
field propagates in thexz plane. Withky

050, the tensorshs

andhp reduce to

hxx
p ~kx!56

kkz

kk
2 @Ak,xx

p exp~ ikkzz!2Bk,xx
p exp~2 ikkzz!#,

~A28!

hxz
p ~kx!52

kx

kk
2 @Ak,xz

p exp~ ikkzz!2Bk,xz
p exp~2 ikkzz!#,

~A68!

hyy
s ~kx!5

1

kkz
@Ak

sexp~ ikkzz!1Bk
sexp~2 ikkzz!#,

~A98!

hzx
p ~kx!57

kx

kk
2 @Ak,zx

p exp~ ikkzz!1Bk,zx
p exp~2 ikkzz!#,

~A148!

hzz
p ~kx!5

kx
2

kk
2kkz

@Ak,zz
p exp~ ikkzz!1Bk,zz

p exp~2 ikkzz!#,

~A188!

and all other components vanish.
These equations clearly show the decoupling of the t

polarizations that can be excited in that case. For the c
ponent of the illuminating electric field parallel to the tran
lation symmetry axisy ~TM polarization!, G2D reduces to a
scalar@Eq. ~A98!#. For the components perpendicular to th
axis, i.e., lying within thexz plane ~TE polarization!, G2D
reduces to a (232) matrix @Eqs. ~A28!, ~A68!, ~A148!, and
~A188!#.
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