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Green'’s tensor technique for scattering in two-dimensional stratified media
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We present an accurate and self-consistent technique for computing the electromagnetic field in scattering
structures formed by bodies embedded in a stratified background and extending infinitely in one direction
(two-dimensional geometyyWith this fully vectorial approach based on the Green’s tensor associated with the
background, only the embedded scatterers must be discretized, the entire stratified background being accounted
for by the Green'’s tensor. We first derive the formulas for the computation of this dyadic and discuss in detail
its physical substance. The utilization of this technique for the solution of scattering problems in complex
structures is then illustrated with examples from photonic integrated cirgugtgeguide grating couplers with
varying periodicity.
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[. INTRODUCTION Let us emphasize that it is not necessary that also the inci-
dent fieldE® propagates in the&z plane (Fig. 1). The sole
The accurate computation of light scattering from par-constraint is thaE® has an exp'kgy) dependence on the sym-
ticles in the presence of a stratified background is extremelynetry directiony. For example, a plane wave
important for the understanding of realistic structures.
Ridges on a multilayered waveguifid], opaque regions ona  E%(r,t)=E%xp(ik’r —iwt) = E%exp(ik{r|— i wt)exp(ikJy)
contact lithography mask2], polarization gratings on a 3
transparent backplarn@&], and nanowires deposited on a sub-
strate for surface-enhanced Raman scattddiall have in ~ at oblique incidence on the structure fuffills this condition
common that dielectric or metallic scatterers are distributedFigs. 1 and 2
in a medium consisting of several layers with different per- However, if E° propagates in thez plane )=0), it is
mittivities. possible to decompose the total field into a transverse electric
Recently, we presented a technique for computing théTE) part with the electric field in th&z plane, and a trans-
propagation and scattering of light in three-dimensidB&l)  verse magneti¢TM) part with the electric field parallel to
structures formed by a stratified background with embedded
scatterers of finite extension in all three dimensiph®].
This approach is based on the Green’s tensor associated with
the stratified background. In this paper, we extend this tech-
nigue to two-dimensiongRD) geometries, i.e., systems with
a translation symmetry in one direction.
A typical 2D system that we want to study is shown in
Fig. 1. Several scatterers described by the permittis(ty)
are embedded in a stratified background and illuminated with
an incident fieldE®. The stratified background is composed

of L layers with relative permittivity,, =1, ... L, and the

scatterers extend infinitely along tlgeaxis so that the mate- 7 4
rial system is invariant in that direction. If also the excitation Y

has such a translation symmetry, we can restrict the study of 4.,

the 3D systen{Fig. 1) to a 2D cross section in thez plane
(Fig. 2). We then define the coordinate parallel to this

plane FIG. 1. Schematic view of a 2D scattering system. Several scat-

terers with permittivitye(r) are embedded in a stratified back-
ground formed byL layers with permittivitye,, =1, ... L. The
scatterers are infinitely extended in thiedirection. However, the
propagation of the incident field is not restricted and its wave vector
k°:kﬁ+ k(y’ can have components parallel and perpendicular to the
xz plane. Similarly, the electric field can be split into two contribu-
k:(ku iky):(kkaz-ky)- 2 tions: thep-polarized parlEg lying within the plane of incidence

formed byk® and thez axis, and thes-polarized part? standing

perpendicularly to this plane. Kozkﬁ’ (k(y)=0), p polarization is
*Correspondence author. Email address: martin@ifh.ee.ethz.ch referred to as TE and polarization as TM.

r=(rp,ry)=(rg.rz,ry), ()

and the parallel wave vectd,
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EO
. Z EO E(r):EO(r)+jvdr’G3D(r,r’)~kSAs(r’)E(r’), (4)

N where G3p(r,r’) is the Green’s tensor associated with the
stratified backgroundk3= w?equq is the vacuum wave

kf & number, and\e(r) is the dielectric contrast:
Ae(r)=¢e(r)—e,, relayer k. (5)
dy The integration in Eq(4) runs over the scatterer voluné
The Green’s tensoGsp(r,r’) is the solution of the vector
d, wave equation with a point source tef?],
<
VXV XGyp(r,r')—kie, Gap(r,r)=18(r—r"),
y . dias r e layer «, (6)

FIG. 2. Projection of Fig. 1 on thez plane. This plane is nor- and represents the electric field in the stratified background
mal to the direction of translation symmetry and the investigation offadiated at by three orthogonal unit dipoles locatedrat
the system can be restricted to this plane. Note that only the pro- In a 2D system, where the scatterer volume extends infi-
jectionkh’ of the incident wave vectde® is shown and in general all nitely in they direction, the dielectric contrast does not de-
three components of the incident electric field are nonzero. pend on this coordinate. Since we assume, as discussed in
the Introduction, that all the fields have a plane-wave depen-
the y direction. These two polarizations are then decoupledlence in they direction, the electric field can be written as
and the scattered field conserves the polarization of the inci- o
dent field, i.e., thex andz field components are independent E(r)=E(rexp(ikyy). @)
of the y component. This is not the case for oblique inci-
dence ((S# 0): all three field components are coupled to-
gether and new components that were not present in the i
cident field can be created during the scattering progéss
For the investigation of such 2D geometries, many usefu
techniques have already been developgd21]. However,
most of them strongly depend on the particular geometr
under study. The aim of this paper is to present a very gen-
eral technique for scattering calculations in 2D systems  E(r))= E°(r||)+f dr Gap(ry,rj)- kéAs(rﬁ)E(r”’), (8)
where the scatterers are embedded in a background formed A
by an arbitrary number of layers. The description of our ap- .
) . ; where we introduced
proach in Sec. Il consists of two parts. First, we study the
general solution of the scattering problem using the Green'’s o
tensor associated with the background of the system. We GZD(rH,r|i)=f dy’GgD(r,r’)exr[ikg(y’—y)]. 9
then derive this Green’s tensor and discuss its numerical o

computation. In Sec. III., we illustrate the techmqu_e with two Note that the integration in Eq8) runs only over the scat-
examples and summarize in Sec. IV. All the detailed formu- . : ,
. s . . terers sectiorA. Recalling thatG,p(r,r’) corresponds to a
las required for the practical implementation of this method . N . .
: : : point sourceG,p(r,r|) gives the field generated by an in-
are given in the Appendix. o S o
finite line source extending in thedirection and represents
the 2D Green’s tensor associated with the stratified back-

Let us note that the wave-vector compond{ﬁt which is
jangential to the different material interfaces, is constant
throughout the entire stratified background. It is therefore
r':,olely determined by the illumination field and remains con-
served in the scattered field. Hence, E4).can be rewritten
y’;ls

[l. FORMALISM ground.
A. Solution of the 2D scattering problem tW(;A;;cr)trS?D system$6], the Green'’s tensor can be split into

To obtain the solution of the 2D scattering problem de-
picted in Figs. 1 and 2, let us start with the more general Gop(I.1[) = S, Gop(r) .1 [) + Ghp(ry 1),
solution of the corresponding 3D problem as developed in
Refs.[5,6]. We consider nonmagnetic materials with relative rjelayer «,rjelayer «'. (10
permeability x=1 and harmonic fields with time depen-
dence exptiot). GE’D corresponds to the direct field frorﬁl tor; and is given

When a system formed by a stratified background within closed form by the 2D Green’s tensor for an infinite ho-
embedded scatterers is illuminated with an incident electriecnogeneous material of permittivity, [7]. The indirect part
field E°(r), the total fieldE(r) is given by the volume inte- G'ZD accounts for all the reflections and refractions at the
gral equation: interfaces and must be evaluated numerically. Since the di-
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vergence of the Green’s tensor fqr—>r‘ is completely in- The Green’s tensor is expressed in reciprocal spdce (
cluded inG3y, it can be treated in a similar way to that for spacé, where the boundary conditions at the stratification
an infinite homogeneous medium. Taking the principal valudnterfaces can be enforced more easily. Since we need the

as in Eq.(7) in Ref.[7], we rewrite Eq.(8) as Green'’s tensor in direct space, an inverse Fourier transform
is performed and, after analytical integration okegfz is the
E(r))= Eo(f||)+f dru'Glzo(rH ,rH’)-kSAe(rﬁ)E(r”’) stratlflcauo,n directiohy we find the following expression for
A the Green’s tensor associated with a stratified background

[Eqg. (10) in Ref.[5]]:
+ lim J'AiaAdr”’aKK,G?D(rH,r‘|’)~k§As(rH’)E(rH’)

55—0 prd i
Gap(r,r')=——R)+ —2f f dk.dk,
As(r”) Kic 87
—-L- E(r)), 11 , , :
Xexpli[Ku(x—x") +k,(y—y") ]}
where the infinitesimal are@A centered afr| is used to X [hS(ky,k,;2,2")+hP(ky Ky ;2,2')],
exclude the singularity. The source dyadiaepends on the Y Y
shape ofSA and is given in detail by Yaghjiaf23]. (14
B. Discretized 2D equation where R=(x—x",y—y’,z—2') and ki=w? u, with

elayer k. The tensordh® and hP take |nto account all the
reflections and refractions at the different interfaces. They
are determined by the boundary conditions for the electric
—Ae(ry,). The discretization need not be regular but can and the magnetic fields and can be split into two parts cor-
vary locally to enhance the required accuracy, with a Sma”epespondlng to the- andp-polarized waves, as indicated by

mesh where the dielectric contrast(r)) is large. Introduc- the superscript. _ ,
ing the dlscreuzed fieldE; = E(r) ;) and the discretized Inserting Eq.(14) in Eq. (9), the integral ovey’ can be

The integral equatiofll) is solved numerically on a two
dimensional grid withN meshes centered af;  layer «;
with area A;, i=1,... N, and dielectric contrastAg;

Green’s tensorés Gzo(rH " J) andG Gzo(rl\ LT ]) identified with aéd function:
the discretized versmn of Eqll) reads ~n ]
7z i
N GZD(r,r’)=——25(R)+—f fdkxdk
4 y
E=E%+ > G, -KeAsEA, Kl T
=1 v

x exfiky(x—x")]exg i (k,—k))y]8(k,—ky)

D 2 ’ . ’
+j:lE,j¢1 5KinGi,j ’ I(OAS]EJ'A\J X[hs(kx vky Z,Z )+ hp(kx vky 2,2 )]
Asi 7R ijwdk ik '

M- kjAsE—L- —E;, (12) e (R)+7— | dkexdik(x—x")]

-1 N X[ho(ky,kY;2,2') +hP(ke k9:2,27)]. (15)
with the self-termM; defined as Thus, to obtain the 2D Green’s tensor, only a one-
dimensional integral over the transverse compogmhust
M= lim f drH,G?D(rH i ,rﬁ). (13) be calculated numerically. The component;; of the teri;%rs

SA0Y A ' andhP can be derived from careful evaluation of Ef0) in

Ref.[5] and are explicitly given in the Appendix.

Since the tensork andM; come from the direct contribu- The numerical evaluation of the remaining integrdts.
tion, we can use their analytic form for a homogeneous potf15)] is intricate because it involves several poles and branch
larizable background with permittivity,., as given in Ref.  cuts corresponding to the different electromagnetic modes
[7]. The system of equationd?) is best solved using an that can be excited in the stratified medium. However, the
iterative solver such as conjugate gradidi24]. mathematical structure of the equations for the 2D case pre-
sented here is similar to that of the 3D case detailed in Ref.
[5]. A difference at first view is that in 2D the integrals run

Equation (9) shows that the Green’s tensor for the 2D along the entirek, axis while for 3D the integration path is
system can be directly obtained froByp(r,r’) by integra-  restricted to the semi-infinite positive, axis. However, in
tion along the translation axig WhereasGsp(r,r’) for an 2D the component functions &° andhP are either even or
infinite homogeneous background can be expressed analytidd symmetrical with respect to the integration varidgle
cally [7], this is not possible when the background is strati-It is therefore possible to reduce the quadrature to the semi-
fied. However, a formulation can be found that provides anfinite positivek, axis. Hence, exactly the same integration
numerical solution foGyp(r,r’) in that case, as explained in technique as proposed in 3D can be applild We first use
detail in Ref.[5]. Let us briefly summarize this procedure: an elliptical deformation of the integration path in the fourth

C. 2D Green'’s tensor for a stratified medium
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guadrant of the complek, plane to avoid the singularities. h=430 nm

As in the 3D case, we then have two possibilities to resume €3 &
the integration: Either we follow the re&l, axis or (for x
#Xx") we deflect the integration path parallel to the imagi-
nary axis with the correct direction chosen in accordance to
the sign ofx—x’. In both cases the integrands converge
exponentially because of their dependence on ikg¥

—Z |)=expli[kK;— K~ ()24 z— 2’ [} — exp(~kJz—2'|) when
k,—o for the real axis integratiofisee Eqs(A1)—(A18)],

and on expk,|x—x'|) [see Eq(15)] for the deflected integra-
tion path. Hence, a comparison betwepz'| and |x

—x'| gives the path that provides fastest convergence. Let us
finally note the basic difference between the 2D and 3D in-
tegrals: In 3D, the angular integration of exponential func-
tions ink space leads to Bessel/Hankel functions in the in-

tegrand, whereas in 2D, the bare exponential functions
remain. FIG. 3. Green’s tensor components for a stratified background

(IGy,] and |G,J) and a homogeneous backgroundéG |
=[Gy ,y1). The stratified structure consists of three layers with

30—y

|G(r,P)] [em ]

l. ILLUSTRATIVE EXAMPLES =1,e,=9, e5=1. The high permittivity slab extends fron+ 0 to
i ) ) z=430 nm resulting in maximal transmissiofi,{,,=1). The per-
A. The Green's tensor as a dipole field mittivity of the homogeneous medium is,= 1. The line source at

To clarify the physical substance of the Green’s tensor fo?' =1 um is located in the top layer and held fixed. The wave-
stratified media, let us start by illustrating some of its basidength isA =633 nm.

properties. We consider a simple three-layer systgm1, . . ,
£,=9, e5=1 with varying thicknesd of the high permit- Let us now discuss the relation between the Green'’s ten-

tivity slab, and we study two components of the Green‘sSOr for a stratified medium and that associated with a homo-
tensor,G,, andG,,, as a function of the coordinate of the ~9ENEOUS background,, . When rH—r|’, becomes large, the
observation point, rj=(\,z). The source point rf plane-wave expansion of the'Green s tensor is ma!nly gov-
—(0,1m) is held fixed in the top layer. The vacuum illu- grned by the plane, wave vyhlch propagates in radial direc-
mination wavelength i3 =633 nm. tion, kH/|k|||.=(r”—rH)/.|r||—rH|. Hence, withx fixed andz

Let us first mention that both components vanish if the— =%, the integrals in Eq(15) are dominated by thé,

incident field does not have a componédjtin they direc- =0 terms. In this limit, the ratio between the free-space
tion. (In that case, TE and TM waves are decoupled angOmponent and the component with stratification is given by
Gyu=Gyy=Gy,=G,,=0. In our example, we use an illu- the reflection and transmission coefficients of the stratified

L . = . 0_ . structure corresponding to this single plane wave. For a
mination with & 111] orientation, so thaky=k, /3. Figure three-layer structure, the transmission coefficiéifor G,

3 showsG,,, and G,, when the high permittivity layer ex-

tends frorr){ézo toZ§=430 nm. Sgincré the Grgen’)s/ tensor andG,y reads{25]

represents the electric field radiatedr dty three orthogonal T, expihks,,) an
unit dipoles atr’, its components must fulfill the respective = : '

boundary conditions at the interfaces. Correspondingly, 1+ RipRoexp(2ihks,)

(they component of @-oriented dipol¢is continuous across whereR, ., and7; ., are the Fresnel reflection and trans-
the interfaces, whereds,, (thez component of g-oriented  mission coefficients:

dipole) jumps by a factors,/e,=9 andez/e,=3, respec-

tively. . IS PIL EET: 18
It is quite surprising that in the lower layee€0) both WL ekt ek 1, (183
components are identicéfig. 3). Using the integrands given
in the Appendix and the iterative derivation of the amplitude 2g) 11Kz
coefficients of Appendix A in Ref5], it can be shown that NS S P (18b
for r’ andr in the two outermost layers 1 ard the com- Ptz T
ponents of the Green’s tensor are coupled: Note that Egs(18a and (18b) give the coefficients for a
p—polarized plane wave corresponding to the polarization of
Gaz _ GM, a=x.y, (16) Gy, andG,, [;ee Eqs(A12) _and (A16)]. N _
Kiy Kz An analysis of Eq.(17) yields a condition for maximal
transmission through the slab with thickndss
wherek;, = [ki—kZ— (k))?]¥2 I=1L. Since in our example hyaKay= N1, (193
r' is located in the top layer and,,=ks,, the components
coincide forz<0 (Fig. 3). and for minimal transmission

066615-4



GREEN’'S TENSOR TECHNIQUE FOR SCATTERING IN . .. PHYSICAL REVIEW@ 066615

h=484 nm . d

——— |

Vdnodn ! /7 /

—ia—>, ilSOnm

. . . . air
2 i i SiO, (400 nm)

B X

|G(r,P)] [um™]

FIG. 5. Geometry of the SOI planar waveguigErmittivities

i e5i=12.3, £510,=2.1; wavelengtih =1.3 um). A Si grating with

! 150-nm height, periodicityl, and a 0.5 filling factor is etched on
] 1 top of the waveguide.

e

AAaa
AURYAVAW

o
L.

2 ! Z[Sm] ! 2 to unity. Three periodicities-¢=300 nm,d=400 nm, and
d=500 nm—are considered at a fixed filling factor 0.5. At
FIG. 4. Same situation as in Fig. 3, but with a high permittivity the left side of all three geometries, a standing wave occurs

layer with thicknessh=484 nm. This corresponds to minimal because of the reflection of the incoming mode by the grat-

transmission through the slafi(;,~0.69). ing. At the right side, beyond the grating, we can observe an
interference pattern created by the interaction of the fields
hminko,=(N+ 1) 77, (19b) scattered in the forward direction by the different protrusions

(and the waveguide modleThe electric-field distributions

where n=1,23.... Since for the k,=0 terms k,,  strongly differ in the three cases. Fd=300 nm, most of

= Vk2— (K92, maximal and minimal transmission through the outcoupled light is scattered towards the substrate and
the slab yof our example are obtained whémn,~n almos_t no Iight_i; scattered_ upwardBig. 6(@)]. With in—.
x107.5 nm andh,~(n+1/2)x 107.5 nm, respectively. Creasing periodicity, the main beam of the outcoupled light
The corresponding coefficient of maximal and minimal 'Otates, so that fod =400 nm andi=500 nm a larger frac-
transmission i§7;,.]=1 and|7,;|~0.69, respectivelyEq. tion of the scattered field is transmitted into the [d#igs.
(17)]. Hence, the plane wave is completely transmitted®(® and Gc)]. o _ o
through a slab with thickneds.,, without any reflection. For a more quantitative comparison, we report in Fig. 7

In Fig. 3 ( h=430 nm=4x107.5 nm, maximal trans- the angular distribution of the electric-field amplituldg far
mission [see Eq.(193]), we also report the component
Gh,yz= G,y Of the Green’s tensor associated with a homo- )
geneous backgroundy=1. In the far-field limitz— * o, _
we observe that indeed the components for the stratified 50
structure converge to the free-space solution. At N
=*+2 um, the difference is less than 5% and at -2
=210 um it is ~1% (not shown. For comparison, we [ !
also study a second structure with=484 nm=(4+1/2) 3 T
%x107.5 nm. Figure 4 showS,,, G,,, andGy , for this
geometry with minimal transmission. A=—2 um, the
ratio |G,,/Gy y,/~0.75 and atz=—-10 um |G,,/Gy
~0.70 (not shown it is close to 0.69, as expected from the
above calculation.

B. Scattering on a planar waveguide grating coupler

We now use our formalism for a scattering calculation in
an integrated optics structure. We consider a silicon-on-
insulator (SOI) planar waveguide with a finite rectangular
grating on top, as shown in Fig.[26,27]. If a mode propa-
gates in the waveguide and scatters on the grating, light is
coupled out of the guiding layer and is transmitted into the
air an_d/qr toward§ the substrate. In Fig. 6, we report the £ 6. Electric-field amplitude in the structure of Fig. 5 with
electric-field amplitudgE|[ when a grating consisting of 20 tnree grating periodicitiesa) d=300 nm,(b) d=400 nm, andc)
protrusions is illuminated with the TEmode (transverse 4=500 nm. The bars represent the total length of each grating. The
electric mode with electric field polarized in tlyedirection systems are illuminated with a FEnode propagating in the di-
propagating in thes direction at a wavelength=1.3 um.  rection. For clarity, the guiding silicon layer is marked with two
The maximum amplitude of the incident mode is normalizediines. A logarithmic color scale is used.

1075 107 1073 1072 107! 100
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5%x10~ . , . : , : two-dimensional geometries, 3D structures can often be con-
— 72300 ] sidered as 2D when the extension of the scatterers in one
» . o = o particular direction is very large and the electromagnetic
4x10 1 s T 4=400nm - field is so well localized that edge effects in that direction
b --- d=500nm =l : - €09
— " N 1 become negligible. It is then justified to assume that the sys-
‘2 3107 .'i i S tem extends to infinity in that particular direction.
s b
Nal t!
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Angle ¢ (deg)
APPENDIX

FIG. 7. Angular distribution of the electric-field amplitude . . - . .
50 um away from the center of the three gratings in Fig. 6. The !N this appendix, we explicitly give the integrands of Eq.

central peak ath=180° is caused by the mode in the guiding Si (19)- To impose the boundary conditions at the different in-
layer and appears also @ét=0° and$=360° (not shown. terfaces, the components of the tensbfsand h? are ex-

pressed in terms of upgoing and downgoirggand
away from the grating (50um). Note first that the central p-polarized plane waves:
peak at¢p=180° represents the mode in the guiding layer.

Of course, the same peak occurspat 0° and¢=360° (not < 32 < ) < .
shown. Whereas ford=300 nm, we can observe a single hix(ky) = ——S [Azexpik,,2) + Biexp( —ik,;2) ],
output beam with an anglé=205° (backward direction in KZ%p

the substrate two beams appear fod=400 nm andd (A1)

=500 nm, respectively: a major one into the air with K2k
=100° (approxmatel_y normal to the waveguide surfeard hP (ky) =+ XZ ZZ[AQ,xxeXp(iszZ) —BP exp(—ik,o2)],
¢=61° (backward direction in the airrespectively, and a

minor one towards the substrate with=264° and ¢ ’ (A2)
=293°, respectively.

In the substrate region one observes for all three period- kSkX < ) < )
icities two additional, much broader and smaller peakgpat ~ Mxy(KJ)=— W[Axexmkqu Beexp(—ik,;2)],
~225° and¢$~325°. A comparison with the field distribu- <z7p (A3)
tions of Fig. 6 shows that these peaks correspond to edge
effects at the beginning and at the end of the grating. At O Kk
these interfaces between the planar geometry and the gratmggy( ky) = *— 2" 2"2[ AP L expliK,,2)— B exp(—iK,,2)],
the mode scatters strongly. kik?

Figure 6 also illustrates that the boundary conditions both (A4)
at the edges of the computation window and at the different
material interfaces are perfectly fulfilled. These boundary h%(k) =0, (AS5)
conditions are already included in the Green’s tensor so that
there is no special treatment necessary to avoid unphysical b Ky 0 . o ]
reflections. Let us finally emphasize that the discretization of Nxz2kd)=— F[AK,XZexp(leZz) — B xR —iK,z2)],
the geometry is restricted to the protrusions forming the grat- « (AB)
ing. The optical processes in the stratified planar waveguide
are completely accounted for in the Green’s tensor associated hS.(k,)=hS (A7)
with the background. ey

h)ex( ky) = hgy' (A8)

IV. SUMMARY

. 2
In this paper, we have presented a Green’s tensor ap- X

proach for the computation of scattering problems with 2D hiy(ko) = K s[A%explik,;2) + Biexp( —ik,;2)],
bodies embedded in a stratified background. We have first e (A9)
described in detail the numerical procedure required for the

computation of the Green’s tensor associated with a stratified k°2k

background. We have then demonstrated the utilization ofpP (kx):iy_"z[Ap exp(ik,,z)—BP . exp(—iK 2)],
this dyadic to perform scattering calculations in complex 2D Y o oy

systems. From a practical point of view, in addition to truly (A10)
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h$ (kg =0, (A11)
kO
Z(kx) =— —[AK y2XN(iK ,Z) — BK y 22X —iK,;2Z) ],
“ (A12)
h3x(k,) =0, (A13)
Ky
hP (k) = kZ[AK »EXAiK,2) +BY ,exp(—ik,,2)],
(A14)
h3y(k) =0, (A15)
o
hiy(ky) = [AK 2yexn(ik,,2) +BE , exp —ik,,2)],
K (A16)
h3(k) =0, (A17)
k2
oAk = ——[ AR, £XHiK,2) + B . exp —ik,,2)],

(A18)

where k,2=ki+(k)? and k,,=(ki-k)¥2 with r

e layer . The upper sign in these equations referszto
>z' and the lower sign ta<<z’'. The amplitude coefficients

AS, BS, AP

R «p» andBY , ; must be calculated for the layer
wherer is located and are functions ok (,;z,z'). They are

PHYSICAL REVIEW@ 066615

vanishing amplitude coefficients afpolarized waves are
equal, we can suppress the indieeand 8 and simply write
AS andBS.

Let us now consider the special case in which the incident

field propagates in thgz plane. WlthkO 0, the tensor$’®
andhP reduce to

K,
x(k )= ?[ K, xxequk zZ) BK xxexq - iszZ)],
’ (A2')
hgz( kx) == :: [AK xzequkxzz) Bx xzexli - iszZ)L
K (A6")

1
h5y(k) = ([ AeXRliK 2) + Bfexpl ~ ik .2)],
KZ

(A9)
hP,(ky) = +—[AK 28Xk ,2)+ B exp—ik,,2)],
K (A14")
2
hb(ky) = kikkz[AK . 2XR(iK,,2) +BE L exp(—ik,,2)],
(A18')

and all other components vanish.

These equations clearly show the decoupling of the two
polarizations that can be excited in that case. For the com-

ponent of the illuminating electric field parallel to the trans-

connec;ed to the amplitudes in all other _Iayer_s and can bgition symmetry axis/ (TM polarization, G,p, reduces to a
found via an iterative scheme completely identical to that ofscalar{Eq. (A9)]. For the components perpendicular to that

the 3D case given in Appendix A of Rg6]. Note thatk,, is

now only a function ok, , sincek, is replaced by the con-

axis, i.e., lying within thexz plane (TE polarization, G,p
reduces to a (X2) matrix [Egs. (A2'), (A6'), (A14’), and

stant parametek0 given by the |nC|dent field. Since all non- (A18")].
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